| ABSTRACT. The metallurgical characteristics, toughness and corrosion
resistance of dissimilar welds between duplex stainless steel Alloy 2205
and carbon steel A36 have been evaluated. Both duplex stainless steel ER2209
and Ni-based Alloy 625 filler metals were used to join this combination
using a multipass, gas tungsten arc welding (GTAW) process. Defect-free
welds were made with each filler metal. The toughness of both the 625 and
2209 deposits were acceptable, regardless of heat input. A narrow martensitic
region with high hardness was observed along the A36/2209 fusion boundary.
A similar region was not observed in welds made with the 625 filler metal.
The corrosion resistance of the welds made with 2209 filler metal improved
with increasing heat input, probably due to higher levels of austenite
and reduced chromium nitride precipitation. Welds made with 625 exhibited
severe attack in the root pass, while the bulk of the weld was resistant.
This investigation has shown that both filler metals can be used to join
carbon steel to duplex stainless steels, but that special precautions may
be necessary in corrosive environments.
Introduction Duplex stainless steels have become increasingly attractive to a number of industry sectors due to their superior mechanical properties and corrosion characteristics relative to other stainless steels and structural steels. Although the joining of duplex stainless steels to themselves has been studied extensively, the increased application of these steels will require a better understanding of the issues associated with welds to dissimilar metals. The joining of dissimilar materials is generally more challenging than that of similar materials because of differences in the physical, mechanical and metallurgical properties of the base metals to be joined. These differences may also complicate the selection of filler metals compatible to both base metals. Therefore, filler metal selection is often a compromise between the two dissimilar metals. There are few guidelines for dissimilar metal joining and, in most cases, predicting the microstructure and resultant properties of the weld deposit can be difficult. |
This study was designed to provide some insight
into the microstructure/ property relationships in dissimilar fusion welds
with duplex stainless steels. The dissimilar materials selected for the
overall study included a plain carbon structural steel (A36), an austenitic
stainless steel (Type 304L) and a martensitic stainless steel (Type 410).
This report focuses on the dissimilar combination of Alloy 2205 and A36.
A future paper will report the results of studies conducted on the other
combinations.
Early investigations on the joining of dissimilar metals were primarily devoted to ferrous alloys; however, much of the emphasis was placed on the prevention of weld metal liquation cracking (often referred to as microfissuring), heat-affected zone cracking, carbon migration and oxide penetration, as discussed by Pattee, et al. (Ref. 1). In the 1940s, Schaeffler proposed a diagram for the selection of electrodes for the dissimilar joining of plain carbon and stainless steels that related the microstructural constitution of the weld deposit to its composition, as dictated by the relative proportion of filler metals and base metals (Ref. 2). This diagram (Fig. 1), commonly referred to as the Schaeffler Constitution Diagram, can be used as a means of predicting the weld metal microstructure of dissimilar metal welds in a select group of alloys. |
By plotting the Cr- and Ni-equivalents for the materials on the diagram
and connecting the base metals by a tie line, the deposit microstructure
can be estimated by connecting a point along that tie line (selected as
the midpoint in Fig. 1) to a tie line to the filler metal composition.
The weld metal constitution then lies along the line between the filler
metal and base metal midpoint as dictated by the level of dilution.
The ability to predict microstructure using the Schaeffler Diagram provided a valuable tool for the selection of filler metals and the determination of the effects of base metal dilution. The diagram was particularly useful for predicting the ferrite content in austenitic stainless steel deposits and determining the constitution of dissimilar combinations of carbon steels and austenitic stainless steels. The Schaeffler Diagram does not have a specific weighting factor for nitrogen, however, and as a result, a diagram was proposed by DeLong in 1974 that incorporated N in the Ni-equivalent formula (Ref. 3). This diagram allowed for more accurate estimation of ferrite content over a narrower composition range than the Schaeffler Diagram, improving and correcting the limitations associated with the Schaeffler Diagram. The DeLong Diagram was later found to misrepresent Mn, and FN (Ferrite Number) predictions of highly alloyed compositions such as 309 stainless steel were found to be inaccurate (Ref. 4). Furthermore, its limited composition range made it difficult to utilize for dissimilar metal welding. Siewert, et al. (Ref. 4), developed a modified prediction diagram called the WRC-1988 diagram. This diagram modified and greatly simplified the Cr- and Ni-equivalent formulae and corrected the overestimation of FN for higher alloyed weld metals. Recently, Kotecki, et al. (Ref. 5), had shown Cu to influence the austenite formation and therefore added a Cu factor in the Ni-equivalent formula. This change resulted in the WRC-1992 diagram, which is essentially identical to the WRC-1988 with the addition of a Cu factor in Ni-equivalent formula. An extended version of this diagram (Fig. 2) allows FN estimation in dissimilar welds but does not contain other constitution regimes, as in the Schaeffler Diagram. |
|
Fig. 1 - Schaeffler Diagram (Ref. 2) showing the dissimilar combinations used in this investigation. |
Fig. 2 - WRC-1992 diagram, extended version (Ref. 5) |
| Duplex Stainless Steel to Carbon Steel
Recently, Odegard, et al. (Ref. 6),
studied the joining of duplex Alloy SAF 2507 to carbon steels with respect
to fusion zone mechanical properties. They reported that the phase stability
and the overall properties of the fusion zone were influenced by the welding
parameters and that low heat inputs were necessary to ensure structural
integrity and solidification cracking resistance. Furthermore, they noted
that a highly ferritic fusion zone resulted from high dilution by the carbon
steel, making the weld metal microstructure susceptible to secondary austenite
formation in multipass welding due to reheating of the deposited weld metal
by subsequent passes. High heat input welding schedules were reported to
increase the susceptibility to fusion zone solidification cracking.
Experimental Procedure Materials Welding trials were designed to study the dissimilar joining of duplex stainless steel Alloy 2205 to A36 carbon steel. This dissimilar combination was selected based on a survey of industrial users. Both duplex stainless steel and Ni-based filler metals were selected to join these metals. The chemical compositions for the base and filler metals are listed in Table 2. The base materials were supplied in the form of 12.5-mm (0.5-in.) plate. These plates were cut into 5 x 20 cm (2 x 7.8 in.) coupons with a 37-deg bevel on each plate to provide a 74-deg groove angle for a single-V-groove butt joint configuration. The root face was 1.6 to 2.4 mm (0.062 to 0.094 in.) with a root opening of 2.4 mm. |
Table 1 - Fusion Zone Mechanical Properties of Dissimilar Joints with Alloy 2507 (Ref. 6)
Table 2 - Chemical Composition and Creq and Nieq of the Base and Filler Metals (wt-%)
(a) Cr+Mo+0.7Nb, WRC-1992. (b) Ni+20N+35C+0.25Cu, WRC-1992. (c) (Cr=1.5Mo=2Mn=0.255Si)/(2Ni+12C+12N). (d) PRE (Pitting Resistance Equivalent)=Cr+3.3(Mo+0.5W)+16N. |
Welding Procedure
All welding was performed using the automatic gas tungsten arc welding (GTAW) process with cold wire feed of 1.14-mm (0.045-in.) diameter welding wire. ER2209 and Alloy 625 filler metals were used in the multipass welds to join duplex Alloy 2205 to A36 carbon steel. Two heat input levels were initially selected and used throughout the study, as listed in Table 3. The welding heat inputs used were 1.57 kJ/mm (39.8 kJ/in.) and 2.60 kJ/mm (66 kJ/in.), with the only exception being the root passes in each combination. Due to the difference in material properties (mainly thermal conductivity) the heat flow differed between the two filler metals, thus the root pass heat inputs were different. The 2205/2209/A36 combination utilized a root pass heat input of 1.05 kJ/mm (26.7 kJ/in.), while that of the 2205/625/A36 combination was 1.90 kJ/mm (48.3 kJ/in.). Metallurgical Characterization Optical Metallography Weld cross sections were removed from each
of the combinations and polished through 0.05-micron alumina. The samples
were electrolytically etched in 10% oxalic acid at 5-7 V for 20-25 s. Also,
color etching techniques were employed to provide better resolution between
the ferrite and austenite. These techniques included a two-step modified
Murakami's etch (Ref. 7), which produces a composition-sensitive film resulting
in a variety of colors on the ferrite phase, while the austenite remains
white (uncolored). A ferro-fluid colloidal suspension of Fe3O4
was also used to reveal the duplex microstructure (Ref. 7). Residual magnetism
attracts Fe3O4 particles to the ferrite phase to
provide a color of brown or dark blue in stark contrast to the austenite,
which is white.
|
|
Fig. 3 - Cross section of 2205/2209/A36 weld combination: A - Root pass; B - cover pass.
|
Fig. 4 - WRC-1992 diagram for A36/2209/2205 combination. Fig. 5 - FN vs. location for the 2205/2209/A36 weld combination. |
Fig. 6 - Representative micrograph of 2209/A36 fusion boundary region. Arrows indicate fusion boundary. Fig. 7 - Charpy V-notch impact toughness vs. temperature for the 2205/2209/A36 weld combination. |
| Microhardness Surveys
Hardness testing was carried out on a Leco Model M-400 microhardness
unit using a 1-kg load. Surveys were conducted both across the weld and
from root to cover pass within the weld deposit. The distance between indents
was determined by the weld dimensions in order to obtain appropriate data
for each pass. Generally, the distance between indents was 0.5 mm (0.02
in.) in the lower passes of the weld, 1.0 mm (0.04 in.) in the central
portions of the weld metal and 2.0 mm (0.12 in.) in the cover pass of the
weld metal. Hardness was also measured along the fusion boundary and across
the heat-affected zone (HAZ) into the base metal.
Ferrite Number Measurement The ferrite number (FN) in each weld layer was determined using a MagneGage calibrated per AWS A4.2-91 according to the method developed by Kotecki (Ref. 8). All measurements were obtained on longitudinal sections in the fusion zone rather than transverse sections in order to better quantify variation within a given pass. Four measurements were taken at four different locations within each pass. These measurements were then averaged to obtain the FN for each pass. Charpy Impact Toughness Testing Charpy V-notch (CVN) specimens were machined
from the welded coupons. Samples were prepared in the L-T orientation as
per ASTM E-23. The L-T orientation represents a sample transverse to the
welding direction with the notch located such that testing occurs through
the thickness of the weld from the root to the cover passes. All notches
were located in the center of the weld deposit. Charpy V-notch testing
was performed at temperatures from -196 Pitting Corrosion Testing Pitting corrosion tests were performed at 50 |
The second type was an all-weld-metal sample machined out of the fusion
zone through the thickness. Since the thickness of the material was 12.5
mm, standard 25 x 50 mm (1 x 2 in.) specimens could not be used, and samples
of 12.5 x 33.0 mm (0.5 x 1.3 in.) were used. The specimens were ground
through 600-grit SiC and weighed prior to immersion in the solution. The
pitting corrosion solution was 6% FeCl3·6H2O.
The specimens were immersed in this solution for 72 h and were removed
and observed every 12 h to note any changes. Following the 72-h test period,
the samples were carefully scrubbed under running water and then ultrasonically
cleaned in methanol for approximately 30 min.
Evaluation of pitting was determined by optical microscopy. The pits were counted at magnifications of 50X and measured at 400X. Pit density was determined by dividing the number of pits per unit area. A pit density was determined for each weld layer so a comparison could be made between the different base material combinations and the heat input variations. Results 2205/2209/A36 Weldment Microstructure The dissimilar 2205/A36 combination was welded
with duplex filler metal ER2209. Figure 3A shows the root pass microstructure
of this combination resulting from a heat input of 1.05 kJ/mm and consists
of an austenite matrix (white) with both skeletal and acicular ferrite
(dark etching). Ferrite measurements indicated 20-25 FN in the root pass
for both welding heat inputs of 1.57 KJ/mm and 2.60 KJ/mm. Based on this
FN level, the WRC-1992 diagram (Fig. 4) predicts that the dilution in the
root pass was approximately 33%, which corresponds well with the 35-40%
dilution that was estimated metallographically. Subsequent passes in these
weldments exhibited increased FN from the root to the cover pass, ultimately
reaching 92 FN. A micrograph of the cover pass is shown in Fig. 3B. The
FN transition from the root to the cover pass is shown in Fig. 5. Note
that the FN differential between the root pass and cover pass is roughly
70 FN and that a significant increase in FN occurs between the last fill
pass and the cover pass for both heat inputs.
|
The major microstructural difference between these welds was that the
lower heat input conditions resulted in the precipitation of more chromium
nitride, presumably Cr2N, within the ferrite phase. This precipitation
was most pronounced in the cover pass. The layers beneath the cover pass
exhibited greater volume fractions of austenite, which would therefore
reduce the tendency for Cr2N precipitation because austenite
has a higher solubility for nitrogen than does the ferrite phase. The other
major difference between the two heat input levels was the level of secondary
austenite ( Fusion Zone Hardness The resultant weld deposit hardness of this
combination varied with heat input. The lower heat input weld exhibited
higher hardness in the weld metal and along the A36 fusion boundary than
the high heat input weld. The hardness in the root pass varied from 261
to 287 DPH . The remainder of the weld metal exhibited hardness levels
between 229 and 279 DPH. An average hardness of 260 DPH was found in the
cover pass. Lower hardness was found in the center portions of the fusion
zone (midway through the thickness), as average hardness was 250 DPH. The
hardness along the fusion boundary of the carbon steel was found to be
much higher than the bulk fusion zone hardness and ranged from 253-416
DPH. Generally, the hardness along the 2209/A36 fusion boundary was above
300 DPH, with average levels reaching 410 DPH near the root pass. Softer
regions along this boundary were found to exist in the top third of the
weld. Average hardness levels within and at the fusion boundary of the
A36/2209/2205 weldments are summarized in Table 4.
|
|
Fig. 8 - CVN fracture behavior for 2205/2209/A36 weldment: A - Lower
shelf; B - fracture transition range.
Fig. 9 - Average pit depth vs. weld layer for 2205/2209/A36 combination. Fig. 10 - Pit density vs. weld layer for the 2205/2209/A36 pitting samples: A - Weldment samples; B - all-weld-metal samples. |
Fig. 11 - Microstructure of 2205/625/A36 combination: A - Root pass;
B - cover pass.
Fig. 12 - CVN impact toughness vs. temperature for the 2205/625/A36 weld combination. Fig. 13 - SEM fractograph of 2205/625/A36 CVN specimen produced at
1.57 kJ/mm and tested at -196°C.
Fig. 14 - Average pit depth vs. weld layer for 2205/625/A36 combination. |
| A representative microstructure along the
2209/A36 fusion boundary region is shown in Fig. 6. This micrograph clearly
shows an acicular martensitic structure, which results in significantly
greater hardness along the 2209/A36 fusion boundary than along the 2205
fusion boundary. The carbon steel average base metal hardness (155 DPH)
and the fusion boundary hardness (250-410 DPH) transitions rapidly within
a short distance from the fusion boundary. Type II grain boundaries (Ref.
13) are also present along this fusion boundary. Type II boundaries have
been previously reported by Wu and Patchett (Ref. 13) in nickel-based alloy
cladding on Cr-Mo steels. Carbide precipitation decorates these boundaries
resulting from carbon migration out of the carbon steel into the more highly
alloyed, but lower carbon, fusion zone.
Weld Metal Impact Toughness The CVN impact toughness results for the 2205/2209/A36
weld combination at both heat input levels are shown in Fig. 7. The lower
shelf impact energy was roughly 7.5 ft-lb at temperatures below -140 Pitting Corrosion Corrosion testing of the weld metal was conducted
in two ways. Initial testing was conducted on the entire weldment by immersing
the entire joint cross section, including the base materials, into 6% FeCl3
solution at 50 |
The second pitting corrosion test was conducted on all-weld-metal samples
machined from the weldment. The pitting corrosion results were tabulated
as pit density and average pit depth for the fusion zone.
In the weldment sample, the carbon steel was preferentially attacked by the solution, resulting in complete dissolution of the A36 base metal. The fusion zone pitting corrosion response varied with heat input and corrosion sample. The average pit depth of the weldment sample increased as the heat input increased, as shown in Fig. 9. Conversely, the average pit depth of the all-weld-metal samples decreased as the heat input increased. However, this relation is true only in weld layers 4 and 5 since the general attack experienced by the samples caused surface collapse in the initial passes of both heat input welds. The weldment corrosion samples showed a decrease in pit density in the 2.60 kJ/mm weld as compared to the 1.57 kJ/mm weld. This is illustrated in Fig. 10A and shows that this relation holds true for all weld layers with the exception of the second pass due to accelerated attack in this layer. The 2.60 kJ/mm weld shows densities below 2.0 pits/mm2 for all weld layers, while the lower heat input weld reveals densities generally greater. The all-weld-metal corrosion sample results are shown in Fig. 10B. General attack caused the surface collapse of the initial layers preventing data collection. Figure 10B also shows that no simple correlation can be drawn from the graph as pit density appears scattered between the two heat inputs. The weight loss measurements showed that the lower heat input weld resulted in greater weight loss than that of the higher heat input weld. The weight losses were 2.529 g (36.5% of initial weight) and 2.374 g (30.9% of initial weight) for the 1.57 and 2.60 kJ/mm weldments, respectively, thus indicating higher pitting corrosion resistance of the higher heat input weld. 2205/625/A36 Weldment Microstructure The dissimilar combination of Alloy 2205 and A36 was also welded using the Ni-based filler metal 625. The heat inputs utilized for fill and cover passes were the same as for the 2205/2209/A36 combination. The root pass heat input, 1.90 kJ/mm, was different from the 2205/2209/A36 combination due to differences in thermal properties of the filler alloys. |
Alloy 625 filler metal is a Ni-Cr-Mo material and consists nominally
of 65% Ni, 20-23% Cr and 8-10% Mo. This alloy solidifies entirely to austenite
with some possible lower melting point eutectic and/or carbide formation
at the dendrite interstices. The root pass microstructure of this dissimilar
weld joint is shown in Fig. 11A. It is fully austenitic with second phase
constituents forming in the dendrite interstices. The cover pass of the
2205/625/A36 combination is shown in Fig. 11B. This fully austenitic microstructure
is representative of that of the fill passes and exhibits a more distinct
weld solidification substructure than the root pass. This difference results
from the higher dilution of the filler metal by the base materials in the
root pass.
Fusion Zone Hardness The fusion zone hardness for the 2205/625/A36 welds was unaffected by weld heat input, ranging from 190-220 DPH. Similarly, the hardness along the carbon steel fusion boundary region was comparable to that of the fusion zone for both heat inputs, ranging from 180-220 DPH. The average hardness values for this combination are also summarized in Table 4. Weld Metal Impact Toughness Charpy V-notch test results for the 2205/625/A36
dissimilar weld combination are shown in Fig. 12. As expected, a DBTT is
not observed due to the fully austenitic structure of the fusion zone.
The impact toughness decreases slightly with decreasing temperature. At
-196 |
| Pitting Corrosion
The weldment corrosion response of the 2205/625/A36 weldments also resulted, as expected, in general attack of the carbon steel base metal. Attack was also very pronounced in the root of the weld and resulted in the complete dissolution of the root pass. The root pass was the only pass attacked in this manner and probably resulted from higher dilution of this pass by the A36 base metal. Figure 14 shows increased pit depths with increased heat input for both corrosion sample types. However, the pit depth difference is much smaller in the all-weld-metal samples than the weldment samples when comparing the two heat inputs. The pitting density results vs. weld layer for the weldment and all-weld-metal samples are shown in Fig. 15. Pit density increased with increased heat input as shown for both corrosion samples. The only exception is weld layer 2 in the weldment sample, as the higher heat input resulted in lower pit density relative to the 1.57 kJ/mm weld. The pit densities of both corrosion sample types appear higher in the initial weld layers and generally tend to level out above the third weld layer. The weight loss of the all-weld-metal corrosion samples was 1.402
g (21.5% of initial weight) and 2.212 g (20.6% of initial weight) for the
1.57 kJ/mm and 2.60 kJ/mm heat inputs, respectively. The corrosion rate,
expressed as weight percent, indicates that no difference in pitting corrosion
is evident between the two heat inputs as the weight loss percentages result
in similar values.
Table 3 - GTAW Process Parameters
|
Discussion
The results of this investigation have shown that duplex stainless steel alloy 2205 can be joined to A36 carbon steel using either duplex filler material ER2209 or Ni-based Alloy 625. Both combinations exhibited good weldability and were free from fabrication-related defects such as solidification cracking, liquation cracking, porosity, incomplete fusion, etc. In general, from a procedural point of view, there were no problems welding the dissimilar combinations using either filler material. Microstructure Evolution Weld Metal Table 4 compares the FN and hardness for each
of the combinations studied relative to location in the weld, i.e. root
pass, fill passes and cover pass. Dilution of the Alloy 625 filler metal
is not sufficient to form ferrite within the weld deposit, and the entire
fusion zone is austenitic. The 2205/2209/A36 weld exhibited 20-25 FN in
the root pass, 25-45 FN in the fill passes and increased significantly
to 95 FN in the cover pass. The fill passes showed a gradual increase in
FN with each pass. This results from both a change in dilution from bottom
to top in the multipass weld and the formation of secondary austenite in
underlying weld passes that reduces the FN in the underlying passes. The
WRC-1992 diagram can be used to estimate the dilution effects on FN, but
the diagram is not effective in predicting secondary austenite formation
in multipass welds. Thus, some deviation from the predicted WRC-1992 FN
based strictly on dilution calculations would be expected. In addition,
this diagram predicted lower FN for the cover pass than was actually measured.
|
Previous researchers have suggested that the fusion zone austenite
content is not strongly dependent on heat input, and is controlled primarily
by the composition of the weld metal (Refs. 9-11). Composition analysis
of the individual passes was not performed and, thus, it is not apparent
what composition difference may exist between the fill passes and cover
passes. The formation of secondary austenite in the underlying fill passes
may explain some of the difference, but does not help rationalize why the
cover pass FN exceeds that calculated from the filler metal composition.
The loss of an austenite forming element, such as nitrogen, may explain
the difference, but was not verified.
The root pass of both weld combinations exhibited slightly higher hardness than the fill passes. In the 2205/2209/A36 combination, this may be due to higher levels of secondary austenite ( Table 4 - FN and Hardness for the Fusion Zone and Boundary Region
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| The 2205/625/A36 weld combination exhibited
a fully austenitic fusion zone and, hence, there was little change in hardness
through the weld thickness. Slightly higher hardness in the root pass of
this combination may be attributed to higher dilution from the base materials
and reflects the difference in microstructure between the root and fill
passes.
Fusion Boundary Region Microstructure The high hardness along the fusion boundary region
of both weld combinations is attributable to the formation of a narrow
band of martensite at the dissimilar interface. This martensitic region
is predicted in both cases by the Schaeffler Diagram - Fig. 1. By drawing
tie lines between the filler metal composition and midpoint of the base
metal compositions, it can be seen that for the 2209/625/A36 combination,
15% of this tie line lies within a region where martensite is present.
The 2205/2209/A36 tie line, on the other hand, has more than 65% of its
length in a martensitic region. Thus, for the 2209 filler metal the composition
transition region over which martensite can form will be much wider. This
may explain the pronounced martensite formation along the 2205/2209/A36
fusion boundary region and the apparent martensite-free fusion boundary
region in the 2205/625/A36 weld. Another factor that influences martensite
formation is the difference in carbon diffusion rates in the different
combinations. If carbon migration is reduced or restricted, the likelihood
of martensite formation will be similarly reduced.
Table 7 - Pitting Corrosion Data for the Weldment and All-Weld-Metal Samples
This may suggest that the solidification behavior in this partially mixed region adjacent to the fusion boundary may be different from that of the bulk fusion zone, or that solid-state transformations following solidification may result in the formation of these boundaries. The nature of the Type II boundaries is the subject of ongoing research (Ref. 14). |
Toughness Behavior
The CVN results for both combinations are summarized
in Table 5. In the 2205/2209/A36 combination, there was little apparent
difference in toughness as a function of heat input, which reflects the
similarity in microstructure of these weld deposits. Because of the L-T
orientation of the test samples, the toughness values represent a composite
of the entire weld deposit and are not indicative of local variations due
to microstructure. For example, lower toughness might be expected in the
higher FN cover pass.
Table 8 - Weight Loss from the All-Weld-Metal Corrosion Samples
Corrosion Behavior The two types of corrosion samples (weldment and all weld metal) and their pitting corrosion data are summarized in Table 7. As shown for the 2205/2209/ A36 material combination, the weldment sample shows that for increasing heat input, the pitting corrosion resistance increased when considering the pit density. The average pit depth, on the other hand, increased with increasing heat input and may be due to higher concentration on fewer initiated pits. |
Yasuda (Ref. 17) and Ume (Ref. 18) claim that pitting corrosion decreases
with increased heat input due to slower cooling rates and the formation
of austenite rather than Cr2N precipitation within the ferrite
phase of the fusion zone. Another beneficial effect of lower cooling rates
on pitting resistance is the healing of chromium-depleted regions around
any precipitates. Ume (Ref. 18) reported that the number of initiation
sites decrease with higher heat inputs, thereby supporting the data collected
in the current study of the weldment samples.
The all-weld-metal samples exhibited increased pit density and depth for the higher heat input relative to the 1.57 kJ/mm weld. However, the all-weld-metal corrosion data may be erroneous due to the collapse of the surface in many of these samples, thereby changing the kinetics of the corrosion testing relative to the weldment samples. Table 8 compares the weight loss due to corrosion of the all-weld-metal samples. The percentage weight loss illustrates that increased corrosion resistance is obtained with increased heat input for the 2205/2209/A36 combination. Sridhar, et al. (Ref. 19), showed that pitting corrosion resistance, expressed as a percentage of weight loss, increases with higher heat inputs. They claimed that slower cooling rates resulting in increased austenite and the distribution of the various elements between the ferrite and austenite are the reasons for the increased pitting resistance. The 2205/625/A36 combination resulted in the localized attack of the root pass in each of the corrosion samples tested. The root pass of the all weld metal corrosion samples was completely dissolved by the ferric-chloride solution. This is apparently the result of higher dilution of the filler metal by the carbon steel, as indicated by a variation in microstructure relative to the subsequent corrosion-resistant fill passes. This suggests that a critical composition change occurs between the root pass and the remaining fill and cover passes. Fig. 15 - Pit density vs. weld layer for 2205/625/A36 combination:
A - Weldment sample; B - all weld metal.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Summary and Recommendations
The 2205/A36 base metal combination has been
successfully joined with duplex stainless steel ER2209 and Ni-based Alloy
625 filler metals using multipass GTAW. Heat input had only a minor effect
on the microstructure and toughness for the ER2209 combination. However,
the corrosion behavior showed a marked improvement for higher heat input
welding parameters relative to the lower heat input.
Conclusions 1) The fusion zone microstructures of dissimilar
weld combination 2205/2209/A36 resulted in a general increase in ferrite
number with each subsequent pass and a large increase in FN occurred between
the last fill pass and the cover pass. The measured FN in the cover pass
was greater than that predicted by the WRC-1992 diagram.
This work was supported by the members of Edison Welding Institute through the Cooperative Research Program. The technical support of Dr. Wangen Lin, formerly with EWI and currently with Pratt & Whitney, and other members of the EWI staff during the course of this investigation is greatly appreciated. |
1. Pattee, H. E., Evans, R. M., and Monroe,
R. E. 1968. The Joining of Dissimilar Metals. Defense Metals Information
Center, Battelle Memorial Institute, Columbus, Ohio.
|